MHD Williamson Nanofluid Flow over a Stretching Sheet through a Porous Medium under Effects of Joule Heating, Nonlinear Thermal Radiation, Heat Generation/Absorption, and Chemical Reaction
نویسندگان
چکیده
In this article, the effect of electromagnetic force with thermal radiation on Williamson nanofluid a stretching surface through porous medium was studied considering both heat generation/absorption and Joule heating. On other hand, Brownian motion thermophoresis coefficients considered. The system nonlinear partial differential equations governing study fluid flow has transformed into ordinary using similarity transformations nondimensional variables which were subsequently solved numerically by Rung-Kutta fourth-order method shooting technique. Moreover, resulting physical parameters distributions velocity, temperature, concentration nanoparticles been graphical forms an interest in providing meanings to each parameter. Finally, special diagrams made explain some skin friction coefficient local Nusselt number; these results led reinforcement values for increased magnetic field Darcy number while as well became negative.
منابع مشابه
MHD Natural Convection Flow of Casson Nanofluid over Nonlinearly Stretching Sheet Through Porous Medium with Chemical Reaction and Thermal Radiation
In the present work, the effects of chemical reaction on hydromagnetic natural convection flow of Casson nanofluid induced due to nonlinearly stretching sheet immersed in a porous medium under the influence of thermal radiation and convective boundary condition are performed numerically. Moreover, the effects of velocity slip at stretching sheet wall are also examined in this study. The highly ...
متن کاملMHD Jeffrey NanoFluids Flow Over a Stretching Sheet Through a Porous Medium in Presence of Nonlinear Thermal Radiation and Heat Generation/Absorption
In this article, a numerical investigation of magnetohydrodynamic non-Newtonian nanofluid flow on a stretching sheet through an isotropic porous medium. The effects of both non-linear thermal radiation and heat generation/absorption were studied on distributions of velocity, temperature and concentration. On the other side, the governing partial differential equations have been transformed by u...
متن کاملUnsteady Hydromagnetic Flow of Eyring-Powell Nanofluid over an Inclined Permeable Stretching Sheet with Joule Heating and Thermal Radiation
The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique...
متن کاملMHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet
In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...
متن کاملChemical reaction and thermal radiation effects on MHD micropolar fluid past a stretching sheet embedded in a non-Darcian porous medium
The paper aims at investigating the effects of chemical reaction and thermal radiation on the steady two-dimensional laminar flow of viscous incompressible electrically conducting micropolar fluid past a stretching surface embedded in a non-Darcian porous medium. The radiative heat flux is assumed to follow Rosseland approximation. The governing equations of momentum, angular momentum, energy, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematical Physics
سال: 2021
ISSN: ['1687-9139', '1687-9120']
DOI: https://doi.org/10.1155/2021/9950993